

La avispilla del castaño *Dryocosmus kuriphilus* Considerada la peor plaga del género *Castanea spp.*

La masiva formación de agallas impide que se formen los tejidos vegetales

HOJAS: Reducción de hasta el 70% de la capacidad fotosintética

ÁRBOL: Altera la estructura del árbol y reduce su vigor (Afecta a ramillas jóvenes y peciolos, amentos y nervios

centrales de hojas)

FRUTOS: Pérdidas de hasta el 80% de la cosecha en el peor de los casos

Control por erradicación de las primeras infecciones detectadas

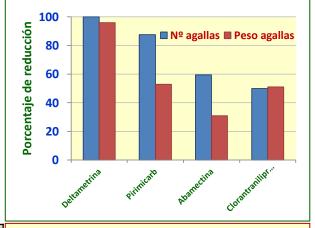
Evaluación de riesgos ambientales y eficacia de las sueltas del parasitoide

Objetivos

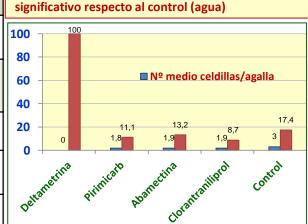
- Avispilla del castaño. Seguimiento y control químico
- Ensayos de evaluación de eficacia de diferentes materias activas (insecticidas, repelentes y retarda para el control de *D. kuriphilus* en plantones de castaño.
- Seguimiento de la fenología de la avispilla del castaño. Evaluación del daño.
- Parasitismo autóctono sobre agallas de D. kuriphilus
- Identificación de las especies de parasitoides autóctonos.
- Cuantificación de la tasa de parasitismo y seguimiento de la evolución del mismo.

- T. sinensis. Evaluación
- Liberación de *T. sinensis*. Estrategia
- Evaluación de la implantación de *T. sinensis* (*Evaluación de la eficacia en control de Dk*).

- T. sinensis. Riesgos ambientales
- Comprobación de la especificidad de *T sinensis* frente a cinípidos de quercíneas en condiciones de laboratorio y campo.
- Comprobación de la posible hibridación de *T. sinensis* con otras especies de *Torymus* en condiciones de laboratorio y campo.



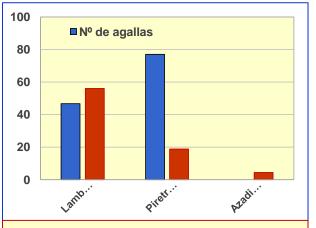
- Castaño bravío
- Tratamiento foliar (nebulización hasta goteo)
- Invernadero compartimentado
- 5 árboles libres de avispilla (repeticiones) / tratamiento
- 1 repetición de cada tratamiento / compartimento.
- Distribución al azar
- 06/07/16: Aplicación foliar en exterior
- 08/07/16: Suelta 30 avispillas / árbol en condiciones
- de aislamiento


osmotizada)

08/08/16: Traspaso a umbráculo

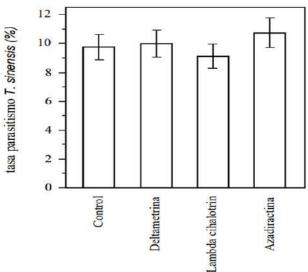
Eficacia en reducción del número y peso de agallas: Todas las materias activas han mostrado efecto

Materia activa Insecticidas	Subgrupo Modo de acción	Dosis
Abamectina (Vertimec)	Avermectina / Contacto e ingestión / Sistémico y Translaminar	75 cc/hl
Clorantranilip rol (Altacor)	Diamida / Contacto e ingestión / Sistémico y Translaminar	100 g/hl
Deltametrina (Decis)	Piretroide / Contacto e ingestión / Repelencia / ecológico	125 cc/hl
Pirimicarb (Aphox)	Carbamato / Contacto e ingestión / Sistémico y Translaminar	100 g/hl
Control (agua		

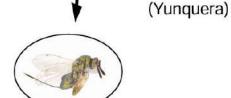



- Castaño bravío
- Tratamiento foliar (nebulización hasta goteo)
- Invernadero compartimentado
- 5 árboles libres de avispilla (repeticiones) / tratamiento
- 1 repetición de cada tratamiento / compartimento.
- Distribución al azar
- 06/07/16: Aplicación foliar en exterior
- 08/07/16: Suelta 30 avispillas / árbol en condiciones
- de aislamiento
- 08/08/16: Traspaso a umbráculo

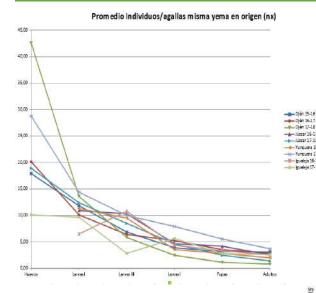
Peso de agalla: Eficacia parcial respecto al control (agua). Número de agallas: ausencia de eficacia


Materia activa Repelentes	Subgrupo Modo de acción	Dosis
Azadiractina (Align)	Azadiractina / Contacto e Ingestión. Repelencia / ecológico	150-250 cc/hl
Lambda cihalotrin (Karate)	Piretrinas / Contacto Ingestión Repelencia	10-20 cc/hl
Extracto de piretrinas (Krisant)	Piretrinas / Contacto / Repelencia / ecológico	100-200 cc/hl
Control (agua osmotizada)		

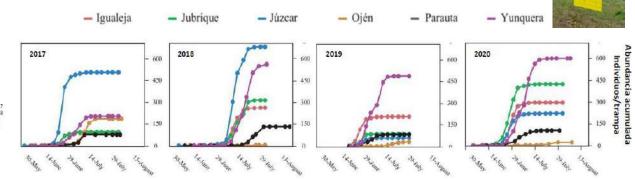
Evaluación del efecto secundario sobre el parasitismo producido por tratamientos químicos contra el agusanado (Cydia splendana)

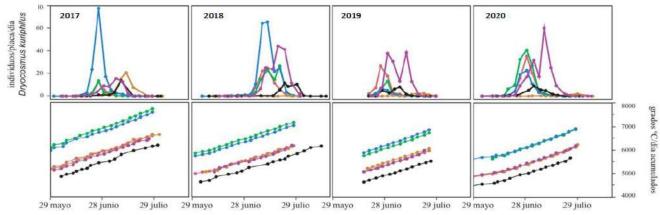


piretrinas y piretroides


- Ensayo realizado en campo
- Tratamientos realizados en septiembre
- Método de aplicación: Pulverización
- Recogida de agallas en enero y seguimiento de la emergencia de parasitoides

Ningún efecto significativo de los insecticidas sobre T. sinensis y los parasitoides autóctonos

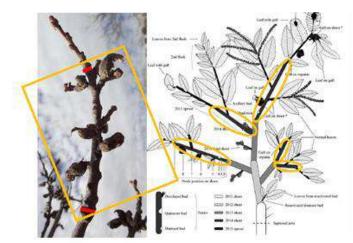

Desarrollo de la avispilla del castaño en Málaga


La mayor mortandad se registra en el paso de huevos a larvas de primer estado

Seguido del paso de larvas de segundo estado a larvas de tercer estado

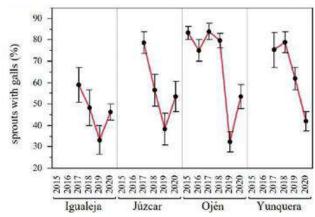
Alta variabilidad entre localidades y años

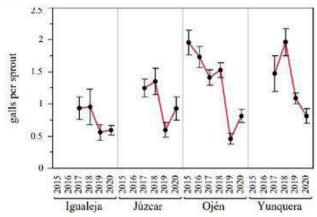
En las localidades más cálidas se desarrolla antes. Vuela en junio y julio El periodo de vuelo guarda cierta relación con los grados/día acumulados



2016-2020 Seguimiento Daño

4 localidades


Brotes del año anterior (15 brotes por árbol en cada localidad y año)



Daño elevado en los primeros años

Desde 2017 descenso del daño

2021 repunte

Evaluación de riesgos ambientales y eficacia de las sueltas del parasitoide

Objetivos

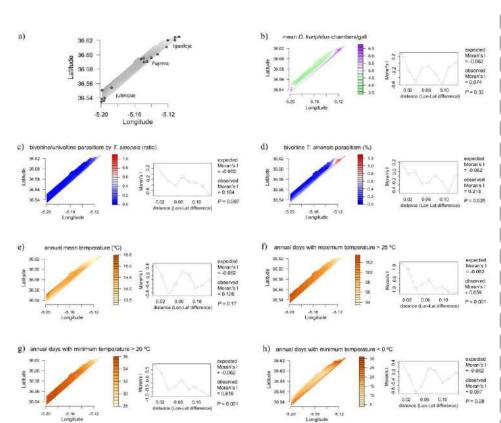
- Avispilla del castaño. Seguimiento y control químico
- Ensayos de evaluación de eficacia de diferentes materias activas (insecticidas, repelentes y retarda para el control de *D. kuriphilus* en plantones de castaño.
- Seguimiento de la fenología de la avispilla del castaño. Evaluación del daño.
- Parasitismo autóctono sobre agallas de D. kuriphilus
- Identificación de las especies de parasitoides autóctonos.
- Cuantificación de la tasa de parasitismo y seguimiento de la evolución del mismo.

- T. sinensis. Evaluación
- Liberación de T. sinensis. Estrategia
- Evaluación de la implantación de *T. sinensis* (*Evaluación de la eficacia en control de Dk*).

- T. sinensis. Riesgos ambientales
- Comprobación de la especificidad de *T sinensis* frente a cinípidos de quercíneas en condiciones de laboratorio y campo.
- Comprobación de la posible hibridación de *T. sinensis* con otras especies de *Torymus* en condiciones de laboratorio y campo.

Control biológico. Reclutamiento de enemigos naturales autóctonos

MINISTERIO DE AGRICULTURA, ALIMENTACIÓN Y MEDIO AMBIENTE COMITÉ CIENTÍFICO/COMITÉ DE FLORA Y FAUNA SILVESTRES

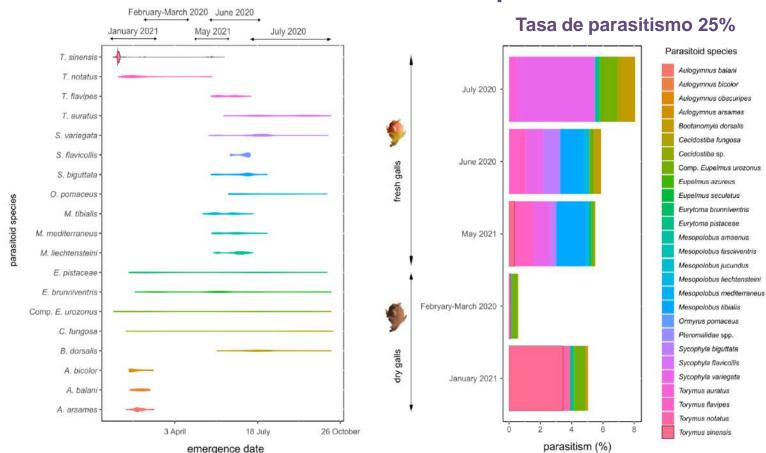

Dictamen sobre la posible introducción en el medio natural de la especie *Torymus sinensis* como organismo de control biológico de la plaga de *Dryocosmus kuriphilus* (avispilla del castaño), que afecta actualmente a la producción de castañas y causa pérdidas económicas en el sector.

Propuesta de:

- ✓ Evaluación detallada del <u>proceso de adquisición natural en campo de enemigos naturales</u> por parte de *Dryocosmus kuriphilus* o avispilla del castaño, que aparentemente está siendo rápido y puede ayudar de manera notable en el control de las poblaciones de la plaga.
- ✓ Realización de ensayos controlados, para evaluar la posibilidad de ataque a otras especies de cinípidos agallícolas de los robles y de hibridación con especies filogenéticamente cercanas y ecológicamente compatibles.

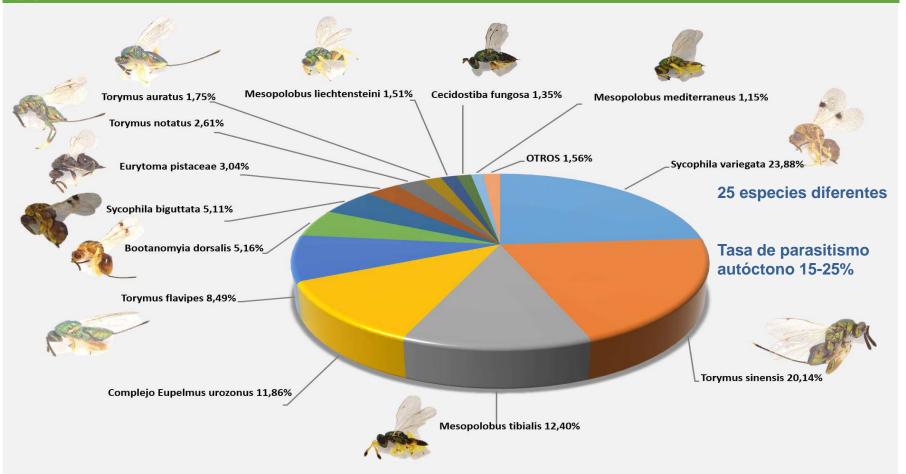
Estudio llevado a cabo durante 2020-2021 en 17 puntos de muestreo en Málaga. 45000 agallas

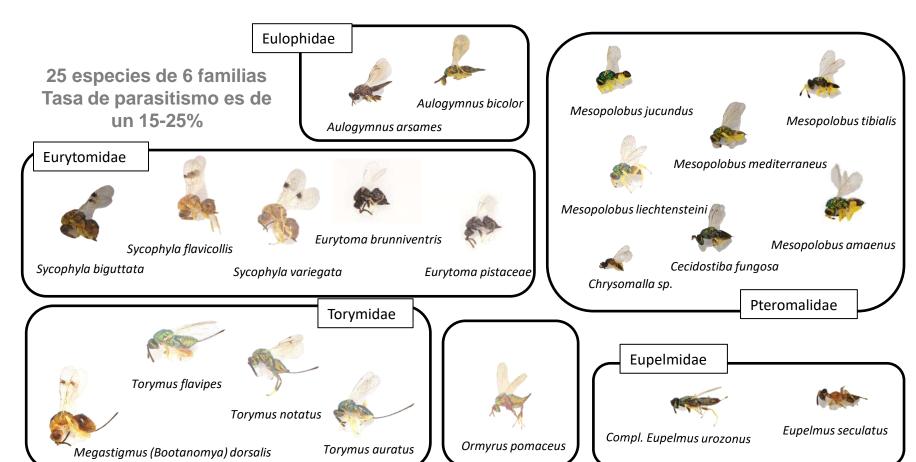
AGALLAS SECAS


febrero- marzo 2020 enero 2021

AGALLAS VERDES

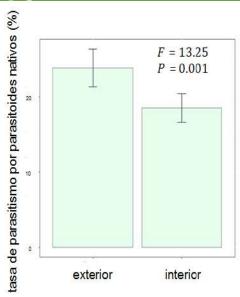
junio 2020 julio 2020 mayo 2021

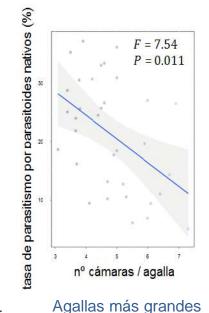

Parasitismo autóctono sobre la avispilla del castaño

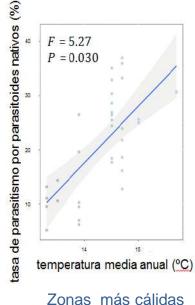

Muestreo
continuo para
estimar la
diversidad y
tasa de
parasitismo de
los parasitoides
reclutados

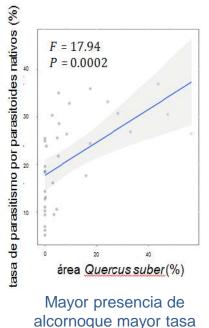
Los parasitoides calcidoideos reclutados difieren en voltinismo y fenología

Control biológico por conservación

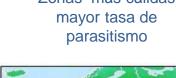








Control biológico por conservación




En el exterior el interior parasitismo autóctono es mayor exterior

menor tasa de

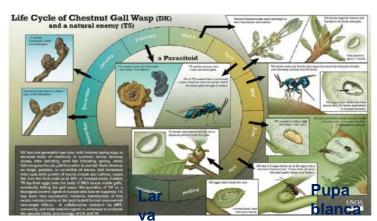
Distintos factores bióticos y abióticos determinan el reclutamiento de parasitoides nativos por la avispilla del castaño

Evaluación de riesgos ambientales y eficacia de las sueltas del parasitoide

Objetivos

- Avispilla del castaño. Seguimiento y control químico
- Ensayos de evaluación de eficacia de diferentes materias activas (insecticidas, repelentes y retarda para el control de *D. kuriphilus* en plantones de castaño.
- Seguimiento de la fenología de la avispilla del castaño. Evaluación del daño.
- Parasitismo autóctono sobre agallas de D. kuriphilus
- Identificación de las especies de parasitoides autóctonos.
- Cuantificación de la tasa de parasitismo y seguimiento de la evolución del mismo.

- T. sinensis. Evaluación
- Liberación de T. sinensis. Estrategia
- Evaluación de la implantación de *T. sinensis* (Evaluación de la eficacia en control de Dk).


- T. sinensis. Riesgos ambientales
- Comprobación de la especificidad de *T sinensis* frente a cinípidos de quercíneas en condiciones de laboratorio y campo.
- Comprobación de la posible hibridación de *T. sinensis* con otras especies de *Torymus* en condiciones de laboratorio y campo.

Torymus sinensis Dryocosmus kuriphilus

Primeras liberaciones en España 2015 (Andalucía, Galicia, Asturias) provenientes de Italia

Colonización por dispersión en Navarra y País Vasco (2017-2018)

Cada hembra pone unos 70 huevos

1 generación al año

Algunos casos de partenogénesis

Pupa Ojos rojos

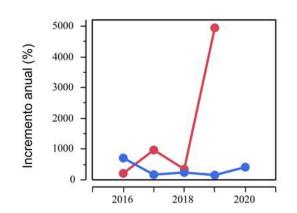
Pupa virando de color

Pupa negra

Experiencia con la avispilla del castaño en Málaga

Año	Dosis	Individuos liberados
2015	11	2.090
2016	78	14.820
2017	132	25.080
2018	316	60.040
2019	486	92.340
2020	855 + 1.174	158.380 + 223.062

Laboratorio de Entomología Agrícola IFAPA


Número de dosis e individuos del parasitoide *Torymus sinensis* liberados en la provincia de Málaga entre los años 2015-2020. Para el año 2020, se muestran las sueltas realizadas por Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible de la Junta de Andalucía (izquierda) más las realizadas por los agricultores y los ayuntamientos (derecha).

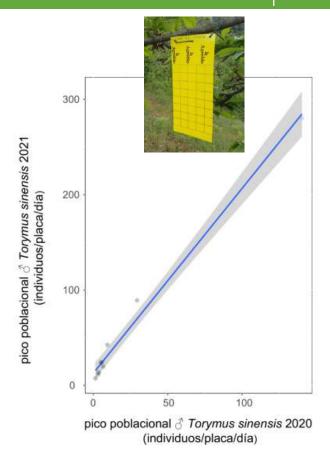
Sueltas del parasitoide *Torymus sinensis*

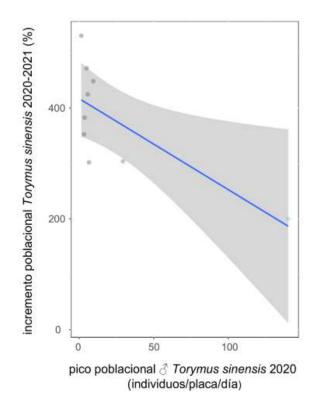
Las poblaciones de *Torymus sinensis* han crecido a un mayor ritmo que las liberaciones:

Dosis unitaria de suelta: 190 *T. sinensis* (120 \circ + 70 \circ)

- Torymus sinensis capturados (%)
- Torymus sinensis liberados (%)

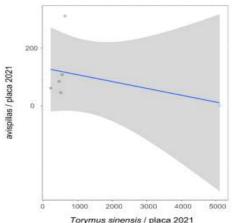
Sueltas T. sinensis. Evolución

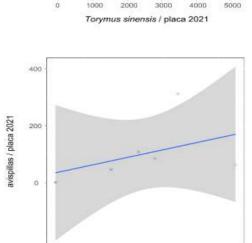

Seguimiento en **9 localidades** 10 Placas/localidad Febrero /Junio

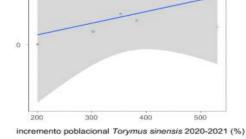

Las poblaciones de *Torymus* sinensis han crecido a mayor ritmo que las liberaciones

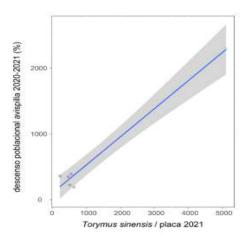
Se ha establecido en todas las localidades Se alcanza el máximo vuelo en el mes de marzo

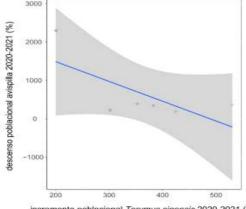
Las poblaciones de *T. sinensis* se han multiplicado 2-5 veces de 2020 a 2021


Las poblaciones crecen más rápido donde había menos *T. sinensis*





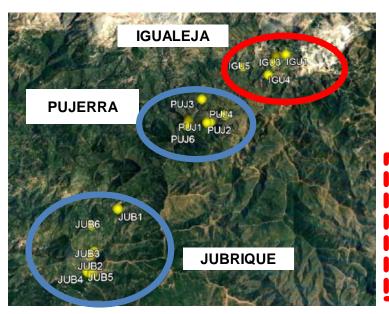

Sueltas T. sinensis. **Evolución**


- >Avispilla < T. sinensis
- > T. sinensis > descenso en las poblaciones de avispilla
- > Avispilla > incremento de poblaciones de *T. sinensis*
- > incremento de las poblacioes de T. sinensis > descenso en las poblaciones de avispilla

incremento poblacional Torymus sinensis 2020-2021 (%)

sinensis

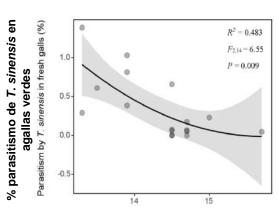
Tasa parasitismo



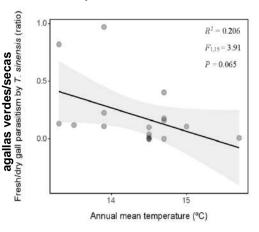
17 puntos de la provincia de Málaga

2 muestreos de agallas en 2021

Registro de temperatura media anual


7.8 % de la población emergió de las agallas verdes

1709 individuos de agallas secas: 3.54 ± 4.09 % 144 individuos de las agallas verdes: 0.34 ± 0.41 %


Este fenómeno ocurrió en 14 localidades → más frecuente en localidades con temperatura media de 13.5 °C

Las temperaturas suaves de invierno adelantan la emergencia

Elevadas temperaturas en primavera favorecen un ciclo rápido

Temperatura media anual °C

Evaluación de riesgos ambientales y eficacia de las sueltas del parasitoide

Objetivos

- Avispilla del castaño. Seguimiento y control químico
- Ensayos de evaluación de eficacia de diferentes materias activas (insecticidas, repelentes y retarda para el control de *D. kuriphilus* en plantones de castaño.
- Seguimiento de la fenología de la avispilla del castaño. Evaluación del daño.
- Parasitismo autóctono sobre agallas de D. kuriphilus
- Identificación de las especies de parasitoides autóctonos.
- Cuantificación de la tasa de parasitismo y seguimiento de la evolución del mismo.

- T. sinensis. Evaluación
- Liberación de T. sinensis. Estrategia
- Evaluación de la implantación de *T. sinensis* (*Evaluación de la eficacia en control de Dk*).

- T. sinensis. Riesgos ambientales
- Comprobación de la especificidad de *T sinensis* frente a cinípidos de quercíneas en condiciones de laboratorio y campo.
- Comprobación de la posible hibridación de *T. sinensis* con otras especies de *Torymus* en condiciones de laboratorio y campo.

Riesgos Ambientales

Ensayos de campo:

Confinamiento mediante embolsado
 T. sinensis – agallas autóctonas

T. sinensis es capaz de parasitar agallas de Neuroterus quercusbaccarum en quejigo

En condiciones naturales se ha comprobado la emergencia de *T. sinensis* a partir de agallas de *Biorhiza pallida* y *Andricus Kollari* en quejigo

Ensayos de laboratorio (comportamiento):

- Oviposición (elección y no elección)T. sinensis parasitoides autóctonos
- X ApareamientoT. sinensis parasitoides autóctonos

Hibridación con especies autóctonas del género Torymus: visionado de videos confinamiento de individuos de diferentes especies autóctonas del género Torymus con *T. sinensis:*

observación de cópulas potenciales 8000 minutos de grabación

ausencia de cópulas en emparejamientos interespecíficos

✓ riesgo bajo o nulo

Torymus sinensis no tiene (aún) un efecto negativo sobre la tasa de parasitismo autóctono: actualmente hay una sinergia entre el control biológico clásico y por conservación

IFAPA CHURRIANA (MÁLAGA)

LABORATORIO ENTOMOLOGÍA

AGRÍCOLA

Muchas Gracias por su Atención

AGRADECIMIENTOS. Proyecto de Apoyo a Demandas y Encargos Institucionales y Sectoriales PR.PEI.IDF2019.001, cofinanciado al 80% por el Fondo Europeo de Desarrollo Regional (FEDER), dentro del programa operativo de Andalucía 2014-2020.

Junta de Andalucía

Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible

Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica

www.ifapa.es